Tree Search Configuration: Cutting Planes and Beyond

Siddharth Prasad

Carnegie Mellon University

Based on joint work with:
Nina Balcan (CMU) Tuomas Sandholm (CMU, Optimized Markets, Inc., Strategic
Machine, Inc., Strategy Robot, Inc.) Ellen Vitercik (Stanford)

Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond. NeurIPS'21 Spotlight Improved Sample Complexity Bounds for Branch-and-Cut. CP'22
Structural Analysis of Branch-and-Cut and the Learnability of Gomory Mixed Integer Cuts. NeurIPS’22

INFORMS 2022

Integer programming

- Integer program (IP) in standard form:

$$
\begin{aligned}
& \text { Max } \boldsymbol{c} \cdot \boldsymbol{x} \\
& \text { s.t. } A \boldsymbol{x} \leq \boldsymbol{b} \\
& \qquad \boldsymbol{x} \in \mathbb{Z}^{n}
\end{aligned}
$$

- One of the most useful and widely applicable optimization techniques

Scheduling

Routing

Combinatorial auctions

Clustering

Summary of contributions

- Cutting planes: responsible for breakthrough speedups of IP solvers in last three decades
- Many ways to configure how IP solvers (e.g. CPLEX, Gurobi) choose cutting planes

- Our contribution: first formal theory for using machine learning to select cutting planes

Branch-and-bound

- Powerful tree-search algorithm used to solve IPs in practice
- Uses the linear programming (LP) relaxation to do an informed search through the set of feasible integer solutions

Branch-and-bound: branching

- Choose variable i to branch on.
- Generate one subproblem with $\boldsymbol{x}[i] \leq\left\lfloor\boldsymbol{x}_{\mathrm{LP}}^{*}[i]\right\rfloor$ another with $\boldsymbol{x}[i] \geq\left\lceil\boldsymbol{x}_{\mathrm{LP}}^{*}[i]\right\rceil$

Branch-and-bound: pruning

- Prune subtrees if
- LP relaxation at a node is integral, infeasible, or
- (Bounding) LP optimal worse than best feasible integer solution found so far

Branch-and-bound: node selection

- At every stage, need to choose a leaf to explore further
- Variety of heuristics (e.g. best-bound-first chooses the node with the smallest LP objective)

Branch-and-cut

- Branch-and-bound, but at each node may add cutting planes
- Method of getting tighter LP relaxation bounds, and thus pruning subtrees sooner

Cutting planes

- Constraint $\alpha x \leq \beta$ is a valid cutting plane if it does not cut off any integer feasible points

Valid cutting planes

An invalid cutting plane

Cutting planes

- If $\alpha x \leq \beta$ is valid and separates the LP optimum, can speed up $B \& C$ by pruning nodes sooner

Tuning branch-and-cut

- Solvers like CPLEX, Gurobi have numerous parameters that control various aspects of the search (CPLEX has 170 page manual describing 172 parameters)

Parameterized tree search

Example of a scoring rule: efficacy

Efficacy:
distance between cut and $x_{\text {LP }}^{*}$

$$
\operatorname{score}_{1}\left(\boldsymbol{\alpha}^{T} \boldsymbol{x} \leq \beta\right)=\frac{\boldsymbol{\alpha} \boldsymbol{x}_{\mathrm{LP}}^{*}-\beta}{\|\boldsymbol{\alpha}\|_{2}}
$$

Example of a scoring rule: parallelism

Parallelism:

angle between cut and objective

Better parallelism

Worse parallelism

$$
\operatorname{score}_{2}\left(\boldsymbol{\alpha}^{T} \boldsymbol{x} \leq \beta\right)=\frac{|\boldsymbol{c} \boldsymbol{\alpha}|}{\|\boldsymbol{\alpha}\|_{2}\|\boldsymbol{c}\|_{2}}
$$

Example of a scoring rule: directed cutoff

Directed cutoff:

distance between cut and x_{Lp}^{*}, in direction of current best integer solution

Better directed cutoff

Worse directed cutoff

$$
\operatorname{score}_{3}\left(\boldsymbol{\alpha}^{T} \boldsymbol{x} \leq \beta\right)=\frac{\boldsymbol{\alpha} \boldsymbol{x}_{\mathrm{LP}}^{*}-\beta}{\left|\boldsymbol{\alpha}\left(\overline{\boldsymbol{x}}-\boldsymbol{x}_{\mathrm{LP}}^{*}\right)\right|} \cdot\left\|\overline{\boldsymbol{x}}-\boldsymbol{x}_{\mathrm{LP}}^{*}\right\|_{2}
$$

Scoring rules

- Open source solver SCIP uses hard-coded mixture of scores to choose cuts
$\frac{3}{5}$ score $_{1}+\frac{1}{10}$ score $_{2}+\frac{1}{2}$ score $_{3}+\frac{1}{10}$ score $_{4}$

Generalization guarantees for tree search and branch-and-cut

Distribution-dependent parameter selection of μ, λ

Learning to tune tree search

Best parameters for airline-scheduling IPs...

...might not be useful for combinatorial-auction IPs solved by a sourcing firm

Learning to tune branch-and-cut

If a certain set of parameters yields small average branch-and-cut tree size over IP samples...

...is it likely to yield a small branch-and-cut tree on a fresh IP?

> Max $\boldsymbol{c} \cdot \boldsymbol{x}$
> s.t. $A \boldsymbol{x} \leq \boldsymbol{b}$
> $\boldsymbol{x} \in \mathbb{Z}^{n}$

Parameterized tree search

Generalization guarantee for tree search

Theorem [BPSV CP'22]: For all μ, λ, difference between average training performance and expected performance when μ, λ is used to select actions and nodes throughout the tree is (whp)

$\Delta=$ tree depth
$k=$ tree branching factor
$b=\#$ actions available at each node
$H=$ cap on size of tree

> Holds for any (unknown)
> distribution over tree-search problem instances

First guarantee that handles multiple critical aspects of branch-and-cut:
Node selection, branching, and cutting plane selection

Sample complexity of tuning tree search

Theorem [BPSV CP'22]: For all μ, λ, the number of samples so that the difference between average training performance and expected performance when μ, λ is used to select actions and nodes throughout the tree is (whp) at most ε is

$$
\tilde{O}\left(\frac{H^{2}}{\varepsilon^{2}}\left(\Delta^{2} \log k+\Delta \log b\right)\right)
$$

$\Delta=$ tree depth
$k=$ tree branching factor
$b=\#$ actions available at each node
$H=$ cap on size of tree
First guarantee that handles multiple critical aspects of branch-and-cut:
Node selection, branching, and cutting plane selection

Back to branch-and-cut

- Our result implies polynomial bounds for:
- Branching: single-variable, multi-variable, branching on general disjunctions with bounded coefficients,...
- Cutting planes: cover cuts, clique cuts, any cuts derived from simplex tableau (Chvátal cuts, Gomory mixed integer cuts)
- Allows node selection to be tuned simultaneously
- Prior work
- [Balcan et al. ICML'18] studied single-variable branching with pathwise scoring rules (our result recovers theirs)

Knapsack cover cuts - an experiment

- Set of items N, item $i \in N$ has value $p_{i} \geq 0$ and weight $w_{i} \geq 0$
- Set of knapsacks K, knapsack $k \in K$ has capacity $W_{k} \geq 0$
- Goal: find feasible packing of maximum weight
maximize $\quad \sum_{i \in N} \Sigma_{k \in K} p_{i} x_{k, i}$
subject to $\quad \sum_{i \in N} w_{i} x_{k, i} \leq W_{k} \quad \forall k \in K$

$$
\begin{array}{ll}
\Sigma_{k \in K} x_{k, i} \leq 1 & \forall i \in N \\
x_{k, i} \in\{0,1\} & \forall i \in N, k \in K
\end{array}
$$

Knapsack cover cuts - an experiment

- Cover cut for knapsack k : if $w_{1}+w_{2}+w_{3} \geq W_{k}$ (items $1,2,3$ are jointly too heavy for knapsack k), can enforce the constraint $x_{k, 1}+x_{k, 2}+x_{k, 3} \leq 2$
- We tune convex combinations of cut scoring rules to control the addition of cover cuts* throughout the branch-and-cut tree
*actually a special kind of cover cut: extended minimal cover cuts

Knapsack cover cuts - an experiment

(a) $\mu \cdot \mathrm{E}+(1-\mu) \cdot \mathrm{P}$.
(b) $\mu \cdot \mathrm{E}+(1-\mu) \cdot \mathrm{D}$.

Figure 1 Chvátal distribution with 35 items and 2 knapsacks.

(b) $\mu \cdot \mathrm{E}+(1-\mu) \cdot \mathrm{D}$.
(a) $\mu \cdot \mathrm{E}+(1-\mu) \cdot \mathrm{P}$.

Figure 2 Chvátal distribution with 35 items and 3 knapsacks.

Knapsack cover cuts - an experiment

(b) $\mu \cdot \mathrm{E}+(1-\mu) \cdot \mathrm{D}$.
(c) $\mu \cdot \mathrm{D}+(1-\mu) \cdot \mathrm{P}$.
(a) $\mu \cdot \mathrm{E}+(1-\mu) \cdot \mathrm{P}$.

Figure 3 Reverse Chvátal distribution with 100 items and 10 knapsacks.

(a) $\mu \cdot \mathrm{E}+(1-\mu) \cdot \mathrm{P}$.

(b) $\mu \cdot \mathrm{E}+(1-\mu) \cdot \mathrm{D}$.

(c) $\mu \cdot \mathrm{D}+(1-\mu) \cdot \mathrm{P}$.

Figure 4 Reverse Chvátal distribution with 100 items and 15 knapsacks.

Structure of branch-and-cut

- [BPSV NeurlPS'21]: Analysis of ChvátalGomory cuts and policies for adding them throughout the B\&C tree
- [BPSV NeurlPS'22]: Analysis of Gomory Mixed Integer cuts
- Requires a deeper mathematical analysis of the geometric and combinatorial structure of B\&C

